	Remote Learning ~ Week At-A-Glance AGATE 3-4 April 27-May 1

Please do your online check in as soon as possible. Need help? Email Haley Warr at hwarr@nkschools.org for help.
Learning from home looks different from learning at school, even the guidelines for how much time a student should spend learning are different. Please remember to dedicate 60-90 minutes to Remote Learning each day. ELA \& Math
ELA your table of content might look like this...
(Tab) Scientific Method: pgs. 1-3
(Tab) Simple Machines: pgs. 4-6
Now, your next entry will be called:
(Tab) Variables: pgs. ?

- Make sure to add all your new learning as we go to your table of contents with page \#'s
- Scientific Method/Data Analysis: So far in this section you have your notes on the scientific method. You added a second tab called
- Simple Machines and took notes behind that tab. Your materials list should be in this section of your journal.
- For this week, add another tab and call it Variables. Behind this tab, take notes from the videos and articles provided for this lesson. In this section, you will also make scientific sketches of your twowheeler designs and write about what happened when you rolled your two-wheelers down a ramp. Record all your trials in this section of your journal.
- Glossary: Add new vocabulary
- Compare Vocabulary list attached to your glossary so far. Do you need to add any words?
- Scientists Poem: Put a Yellow Square around all the verbs (action words)
- IXL Skills-Fact Fluency
- $4^{\text {th }}$ grade J-skills, $5^{\text {th }}$ grade W- skills. We know you may not have finished these skills yet. Continue any you have not finished from last week.
- IXL $4^{\text {th }}$ grade- N skills, $5^{\text {th }}$ grade- Z skills. Focus, primarily on the linear measurement skills.
*******New Skill this Week*******
- IXL $6^{\text {th }}$ grade-Science Tab- B-2 Identify independent and dependent variables.

We are hoping students spend approximately 15-20 minutes a day

Measurement activity:

- Collect measuring tools: ruler, yardstick, tape measure, meter stick etc.
- As you run your trials (rolling your two-wheelers down a ramp) record the distance it goes each time. Watch Mrs. Fairchild's trials.
- In Study Jams -Data Analysis Unit, read and listen to the module on how to calculate the Mean/Average.
- Using a calculator, to compute the average of your trials. Ask a parent for help if needed!

	- Yes Ma'am Poem: Cut out and add to your variables tab section. Read it out loud. - Making a pocket Video	
	Social Studies	Science
	low that you have finished your Nashington state regional report, we are sking you to begin researching a topic of our choosing. It can be anything that terests you! hese notes can be kept in a separate otebook or loose-leaf paper. Remember, otes can be in word form or sketches; 's up to you!	- Variables (flowers) -take notes - Variables (Runner) Take notes - Science A-Z Quick Read (Attached to email) - Science A-Z Worksheet (Attached to email) - The Quick Read is for you to read highlight or underline important/key words and phrases. Add any vocabulary to your glossary. The Worksheet reinforces concepts and has some practice examples for you to complete. - Magic School Bus Plays Ball Take notes. There is a lot of new vocabulary in this episode! - After meeting with Mrs. Taylor and Mrs. Fairchild in our Zoom meeting, you will create a two-wheeler and do some experiments. 1. Make your two-wheeler. Remember, a two-wheeler is made up of two wheels and an axle. 2. Watch the Scientific Drawing video from Mrs. Taylor. 3. Make a scientific drawing of your two-wheeler in your notebook behind the variables tab after taking notes. 4. Roll your two-wheeler 3 times down a ramp and record how far it rolled each time on the attached document. 5. Change ONE variable on your two-wheeler. (For example: you could make your wheels BIGGER or smaller.) 6. Make a second scientific drawing of your new twowheeler and write a hypothesis of how you think the change will affect the distance it will

Two-wheeler Trials:

Recording Sheet

Directions: Now, you get to test out your two-wheelers. Completing 3 attempts for each trial, measure the distance traveled for each run and record it. Then figure the mean for each trial. Now Change ONE variable only and complete 3 attempts for a second trial. Record distance for each run, record it, then find the mean.

Two-wheeler	measurement attempt \#1	measurement attempt \#2	Measurement attempt \#3	Mean/Average

Trial 1				
Trial 2				
Coptional) Trial 3				
Trial 4				
Trial 5				
Trial 6				

VOCABULARY

Scientific Method-the step by step method scientists use to solve problems and test ideas.

Observe-to use senses (sight, smell, touch, hearing, and taste) to carefully obtain information.
Measure-to determine the size or amount of something in relation to a standard.
Question-something you are curious about that you can observe and measure.
Research-to find what you need to know before you perform your experiment.
Information- collected facts and data about a subject.
Predict/Hypothesis- to make an educated guess about what you think will happen.
Design- a plan for what you are going to do
Independent Variable-the "one thing" you change to see if your hypothesis is true
Dependent Variable- the change that happens
Controlled Variable-the one thing that stays the same
Experiment- the test you design about your hypothesis
Record-write down your information
Analyze-to study the test results and think about what they mean

Conclude- to judge something based on what you have observed
Report- to tell about what happened

YES MA'AM By, S.Davey

Is this a variable?
Is this a variable?
How do you know?
How do you know?
Give me some examples.
Give me some examples.

Is this a changed variable?
Is this a changed variable?
How do you know?
How do you know?
Give me some examples.
Give me some examples.

Is this a controlled variable?
Is this a controlled variable?
How do you know?
How do you know?
Give me some examples.
Give me some examples.

And are you through?
Did you tell me true?
What did you chant?
What did you chant?

Yes ma'am.
Yes ma'am.
It's anything that can be changed.
They affect investigations
A long string can get shorter.
A small boat can get heavier.

Yes ma'am.
Yes ma'am.
It is deliberately changed. .
Everything else stays the same.
We can cut our strings.
We can add more washers.

Yes ma'am.
Yes ma'am.
It doesn't change.
It controls the investigation.
The pencil stays in one place.
We all use the same cups.

Yes ma'am.
Yes ma'am.
Variables!
Variables!

